Identification of a Novel Parallel β‐Strand Conformation within Molecular Monolayer of Amyloid Peptide
نویسندگان
چکیده
The differentiation of protein properties and biological functions arises from the variation in the primary and secondary structure. Specifically, in abnormal assemblies of protein, such as amyloid peptide, the secondary structure is closely correlated with the stable ensemble and the cytotoxicity. In this work, the early Aβ33-42 aggregates forming the molecular monolayer at hydrophobic interface are investigated. The molecular monolayer of amyloid peptide Aβ33-42 consisting of novel parallel β-strand-like structure is further revealed by means of a quantitative nanomechanical spectroscopy technique with force controlled in pico-Newton range, combining with molecular dynamic simulation. The identified parallel β-strand-like structure of molecular monolayer is distinct from the antiparallel β-strand structure of Aβ33-42 amyloid fibril. This finding enriches the molecular structures of amyloid peptide aggregation, which could be closely related to the pathogenesis of amyloid disease.
منابع مشابه
Protein Structures: Identification of a Novel Parallel β‐Strand Conformation within Molecular Monolayer of Amyloid Peptide (Adv. Sci. 6/2016)
Alzheimer's disease is the most common form of dementia, with amyloid protein assembly associated with the pathogenesis of disease. Thus it is of utmost importance to reveal the detailed structure of the amyloid protein aggregates. In article 1500369, F. Besenbacher, M. Dong and co-workers discover a new parallel-like β-strand molecular monolayer structure of amyloid peptide at hydrophobic inte...
متن کاملMolecular Dynamics and Molecular Docking Studies on the Interaction between Four Tetrahydroxy Derivatives of Polyphenyls and Beta Amyloid
Interactions of 3,3',4,4'-tetrahydroxybiphenyl (BPT) and three isomeric 3,3",4,4"-tetrahydroxyterphenyls (OTT, MTT, PTT) with Alzheimer’s amyloid-β peptide (Aβ) were studied by molecular dynamics simulation and molecular docking. Structural parameters such as Root-mean-square derivations (RMSD), radial distribution function (RDF), helix percentage and other physical parameters were obtained. Th...
متن کاملVaried Probability of Staying Collapsed/Extended at the Conformational Equilibrium of Monomeric Aβ40 and Aβ42
In present study, we set out to investigate the conformation dynamics of Aβ40 and Aβ42 through exploring the impact of intra-molecular interactions on conformation dynamics using equilibrium molecular dynamics simulations. Our 40 microsecond-scale simulations reveal heterogeneous conformation ensembles of Aβ40 and Aβ42 that encompass ~35% β-strand and ~60% unstructured coils. Two conformational...
متن کاملMembrane-Induced Dichotomous Conformation of Amyloid β with the Disordered N-Terminal Segment Followed by the Stable C-Terminal β Structure
Various neurodegenerative disorders are ascribed to pathogenic molecular processes involving conformational transitions of amyloidogenic proteins into toxic aggregates characterized by their β structures. Accumulating evidence indicates that neuronal cell membranes provide platforms for such conformational transitions of pathogenic proteins as best exemplified by amyloid β (Aβ). Therefore, memb...
متن کاملAmyloid Fibril Formation by Aβ16-22, a Seven-Residue Fragment of the Alzheimer’s β-Amyloid Peptide, and Structural Characterization by Solid State NMR
The seven-residue peptide N-acetyl-Lys-Leu-Val-Phe-Phe-Ala-Glu-NH2, called Aβ16-22 and representing residues 16 through 22 of the full-length β-amyloid peptide associated with Alzheimer’s disease, is shown by electron microscopy to form highly ordered fibrils upon incubation of aqueous solutions. X-ray powder diffraction and optical birefringence measurements confirm that these are amyloid fibr...
متن کامل